Range decompositions and generalized square roots of positive semidefinite matrices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hadamard Inverses, Square Roots and Products of Almost Semidefinite Matrices

Let A = (aij) be an n × n symmetric matrix with all positive entries and just one positive eigenvalue. Bapat proved then that the Hadamard inverse of A, given by A = ( 1 aij ) is positive semidefinite. We show that if moreover A is invertible then A is positive definite. We use this result to obtain a simple proof that with the same hypotheses on A, except that all the diagonal entries of A are...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Logarithms and Square Roots of Real Matrices

The need for computing logarithms or square roots of real matrices arises in a number of applied problems. A significant class of problems comes from medical imaging. One of these problems is to interpolate and to perform statistics on data represented by certain kinds of matrices (such as symmetric positive definite matrices in DTI). Another important and difficult problem is the registration ...

متن کامل

singular value inequalities for positive semidefinite matrices

in this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl‎. ‎308 (2000) 203-211] and [linear algebra appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

Hamiltonian Square Roots of Skew-Hamiltonian Matrices

We present a constructive existence proof that every real skew-Hamiltonian matrix W has a real Hamiltonian square root. The key step in this construction shows how one may bring any such W into a real quasi-Jordan canonical form via symplectic similarity. We show further that every W has infinitely many real Hamiltonian square roots, and give a lower bound on the dimension of the set of all suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1991

ISSN: 0024-3795

DOI: 10.1016/0024-3795(91)90296-9